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An efficient and practical electrophilic amination method that allows the preparation of useful quater-
nary carbon-containing a-aminoketones was developed. The reaction proceeds regiospecifically via a
samarium enolate intermediate at room temperature in the presence of mild reducing agent SmI2. Unlike
the most reported lithium enolate cases, this new amination method does not require the use of strong
base such as BuLi or LDA.
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The electrophilic amination of carbanionic species is an
important C–N bond formation approach that allows the prepara-
tion of a wide range of aminated compounds.1 Over the past years,
many electrophilic aminating reagents have been employed,
including sulfonylazides,2 sulfonyloxycarbamates,3 hydroxylamine
derivatives,4 azodicarboxylates,5 oxaziridines,6 1-chloro-1-nitroso
compounds,7 and arylazo tosylate.8 Among them, di-tert-butylazo-
dicarboxylate (DTBAD) appears one of the most general and prac-
tical electrophilic NH2

þ equivalents owing to its commercial
availability, high stability, and remarkable reactivity.

a-Aminoketones are versatile precursors of many physiologi-
cally important compounds and useful intermediates for organic
synthesis.9 These importances have stimulated the effort to devel-
op new and improved synthetic strategies; asymmetric synthesis
of optically active a-aminoketones is of particular interest in
recent years.10 Among the methods developed, electrophilic
amination of enolates is one of the most important and general
way, and many examples of amination of lithium enolates,11

enamines,12 and enolsilanes13 have been documented. To the best
of our knowledge, there has been no report concerning the electro-
philic amination of samarium enolates. In the last two decades,
SmI2 has played an important role in organic synthesis.14 Our
interest in SmI2-mediated reactions15 led us to explore the possi-
bility of the electrophilic amination of samarium enolates.

Previously, Molander16 and Takeuchi17 have demonstrated that
samarium enolates of ketones could be formed regiospecifically
from the corresponding a-heterosubstituted ketones by the SmI2-
mediated reaction. Thus, we envisioned if the mild electrophilic
a-amination of a-heterosubstituted ketones could be carried out
using appropriate aminating agent in the presence of SmI2, leading
ll rights reserved.
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to useful a-aminated ketones. Moreover, quaternary carbon-
containing a-aminoketones may also be constructed by this way
(Scheme 1). Herein, we report our results. This is also the first
example of SmI2-promoted electrophilic amination of ketone
enolate.

First, we examined the reaction of 2-methoxy-2-phenyl-cyclo-
hexanone (1a) with di-tert-butylazodicarboxylate (DTBAD) in the
presence of SmI2 (Scheme 2). A procedure similar to that reported
by Molander16 and Takeuchi17 was applied to check the potential
of our consideration. To our delight, when the reaction was per-
formed at 0 �C in THF for 15 min, formation of the desired a-ami-
nation product 2a was indeed found, but the yield was very low
(23%, Table 1, entry 1). A similar yield was obtained when the reac-
tion time was prolonged to 1 h (entry 2). The reduction product of
2-methoxy-2-phenyl-cyclohexanone (1a) was obtained as major
product in about 75% yield in both cases.

To find appropriate conditions, more reaction factors were con-
sidered and investigated. When the reaction substrate 1a was first
stirred with SmI2 for an hour before the addition of the aminating
reagent DTBAD, the reaction gave good yield of 80% (entry 3). This
result suggests the samarium enolate formation is the key to
increase the reaction yield. As the reaction temperature increased
to room temperature, the yield further increased (84%, entry 4).
Gratifyingly, a dramatic improvement of the yield (94%) was
achieved by employing 2 equiv of HMPA as additive18 (entry 5).
R = aromatic or aliphatic HNR'R'' = aminating reagent
X = OMe, OTs, OTMS, Br, Cl,

Scheme 1. Reaction proposal.
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Scheme 2. Amination of substrate 1a with DTBAD.

Table 1
Initial examination of the amination conditions

Entry Procedurea Temp Time Yieldc (%)

1 A 0 �C 15 min 23
2 A 0 �C 1 h 25
3 B 0 �C 1 h 80
4 B rt 1 h 84
5b B rt 1 h 94

a Procedure A: a solution of ketone 1a and DTBAD in THF was added to the
solution of SmI2. Procedure B: a solution of ketone 1a was first added to the solution
of SmI2, the mixture was stirred for 30 min, and then DTBAD was added.

b Two equivalents of HMPA were added as additive.
c Isolated yield.
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a All reactions were carried out in THF using the optimized conditions.
b Isolated yield.
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The detailed experimental procedure used in entry 5 of Table 1
is described below. Under nitrogen, to a solution of freshly made
SmI2 (1 mmol) in THF (5 mL) was added HMPA (0.17 mL, 1 mmol).
After the mixture was stirred at room temperature for 15 min, sub-
strate 1a (102 mg, 0.5 mmol) in freshly distilled THF (3 mL) was
added and the stirring continued for an additional 30 min. DTBAD
(138 mg, 0.6 mmol) in THF (2 mL) was then added, and the reac-
tion mixture was stirred for 1 h. Subsequently, the reaction mix-
ture was quenched with saturated Na2S2O3 aqueous solution. The
aqueous layer was separated and extracted with ether. The com-
bined organic layer was washed successively with water, brine,
and dried over Na2SO4, and concentrated under vacuum. The crude
product was purified by column chromatography on silica gel to
give aminated ketone 2a in 94% yield.

Following the optimal reaction conditions, a variety of a-het-
erosubstituted ketone substrates were tested for the a-amination.
The experimental results are summarized in Table 2. As expected,
the reaction was found very effective for a wide range of substrates
including both cyclic and acyclic a-substituted ketones. In most
cases, the a-amination products could be obtained cleanly in satis-
factory yields.19 In addition to six membered a-methoxy-cyclo-
hexanone substrates, a-methoxy substituted cyclopentanone and
cycloheptanone are also successfully aminated (entries 1–3).
Moreover, the reactions can be performed smoothly when a-halo-
substituted substrates are used (entries 4, 5, 11 and 12). In entries
6-9, 2-methoxy-2-phenyl-cyclohexanone (1a) derivatives having
both electron-withdrawing and electron-donating substituents
on the benzene ring gave the corresponding products in excellent
yields. When substrates 1j was employed, lower yield (67%) was
observed (entry 10). This result indicates that an aromatic substi-
tuent such as phenyl group at the a-position of carbonyl is very
useful but not necessary for the reaction. For acyclic substrates,
as shown in entries 12–13, it was found that a-heterosubstituted
ketones 1l–m could be easily aminated and gave amination
products 2l–m in over 90% yields, indicating a mild and readily
preparation of structurally interesting quaternary carbon-contain-
ing a-aminoketone analogues.

In summary, we have developed an efficient and practical elec-
trophilic amination approach for the preparation of useful quater-
nary carbon-containing a-aminoketones. The reaction can be
performed under very simple and mild reaction conditions. It pro-
ceeds regiospecifically via a samarium enolate intermediate in the
presence of mild reducing agent SmI2; unlike the most reported
lithium enolate cases, this new method does not require the use
of strong base such as BuLi or LDA. Attempts toward the asymmet-
ric version of the reaction as well as the extension of this method
are currently underway.
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